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ABSTRACT 

Results of an assessment of the O R E C A  code are being presented. In par- 
t icular i t  was found t h a t  i n  the case of loss of forced flow circulation the 
predicted peak core temperatures are very sensitive t o  the mean gas tempera- 
tures used i n  the evaluation of the pressure drop terms. 
shortcomings of the conduction algorithm f o r  some specific applications are 
discussed. 

Some potential 

The results of these efforts have been taken i n t o  consideration i n  the 
current version of the ORECA code. 
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1. It!TRODUCTION 

An assesment of the O R E C A  code has been completed as p a r t  of our  ongoing 
e f f o r t ,  t o  review the features ana l imitat ions of exis t ing HTGR safety codes. 
The ul%imate objective of the e f f o r t  i s  t o  enhance confidence i n  these codes 
and increase the i r  u t i l i t y  for licensing applications. 

An ea r l i e r  d r a f t  of this report  was transmitted t o  Oak Ridge National 
Laboratory ( O R E L )  a n d  i t s  resu l t s  have already been considered i n  current 
versions of the  O R E C A  code. 
our  code assessment e f for t s .  

T h i s  report  serves primarily as documentation o f  

The O R E C A  version obtained from O R N L  i s  written for  the F o r t  S t .  Vrain 
The code was reviewed primarily reactor,  and is  documented i n  Reference 1. 

w i t h  the t e s t  case w i t h  which i t  was received: loss  of forced flow circula- 
t i  on ( L O F C  ) fol 1 owed by firewater cool down (FWCD) . 

Section 2 o f  this report  contains some general observations. Section 3 
sumrnarizes the major resu l t s  of t h i s  review ef for t .  
evaluations and local modifications which were made i s  given i n  essent ia l ly  
chronological sequence i n  Appendix A .  
pend? x B .  
i deal i zed conduction probl  em i n the O R E C A  HTGR core configuration. 

The sequence of code 

P l o t s  o f  some resu l t s  are  given i n  Ap- 
Appendix C describes some separate eval u a t i o n s  sol v i  ng a specif ic  

None of the comments of t h i s  informal report  are i n  any way meant t o  be 
c r i t i c a l  o f  the authors of the O R E C A  code. Every code, h a v i n g  advanced t o  a 
given level , i n  response to  specif ic  problems, will have fur ther  res t r ic t ions  
and shortcomings when applied t o  new problems. T h i s  report  will primarily 
out l ine areas where s ignif icant  fur ther  code improvements can be obtained w i t h  
l i t t l e  or moderate programming e f f o r t s ,  and out l ine s i tua t ions ,  where applica- 
t i o n  of the code i n  i t s  present forn! can r e su l t  i n  substantial uncertainties,  
due t o  i t s  current model l ing assumptions and 1 imitations. 

2. GENERAL OBSERVATIONS 

The O R E C A  ( F o r t  S t .  Yrain) code presents a three dimensional model of an  
i!TGR core. The core i s  divided i n t o  37 hexagonal refueling regions and I8 
side ref lectors .  Each o f  these 55 regions i s  divided a x i a l l y  i n t o  nine nodes; 
one t o p  re f lec tor ,  seven active core nodes, one b o t t o m  re f lec tor ,  and one core 
suppor t  bl  ock. 

In l e t  flow r a t e ,  i n l e t  temperature, and i n l e t  pressure t o  the core a rc  
prescribed functions o f  time ( t o  be supplied a s  f u n c t i o n  type subroutines). 

The code solves for the flow dis t r ibut ion t o  the 55 l a t e ra l  regions, the 
overall pressure d r o p ,  and the coolant temperature change due t o  convection i n  
each axial node of each flow channel. The temperature within the composite 
solid of each node i s  considered t o  be constant. The s o l i d  temperature change 
of each node due t o  internal heat generation, heat flow t o  the coolant, and 
due t o  conduction between nodes i s  being computed. 
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Most o f  the design and operating parameters are  "hard wired" in to  the 
code and cannot be changed readily. For instance, the coolant passage diame- 
t e r  i s  neither an i n p u t ,  nor a constant given somewhere i n  the code, b u t  i s  
embedded in numerous numerical constants occuring i n  var ious  executable s t a t e -  
ments. Without a detailed l i s t ,  where this parameter i s  embedded i n  numerical 
constants i t  would be a major undertaking t o  change i t ,  fo r  instance, i n  order 
t o  evaluate the e f fec t  of such a design change. 
computation speed, b u t  i t  s ignif icant ly  reduces the f l e x i b i l i t y  of the code, 
and does not: o f fe r  the generality of a general purpose code. 

Such " h a r d  w i r i n g "  increases 

The des i rab i l i ty  of program s t ructure  changes, t o  accept such basic de- 
sign and operating parameters as i n p u t  data or a t  l e a s t  as one individual con- 
s t a n t ,  depends on the envisioned future  applications of the code. 

3. RESULTS OF ORECA CODE EVALUATION 

The most s ign i f icant  resu l t s  o f  our evaluations of various aspects of the 
ORECA code a re  summarized i n  this section. 
chronological description of the code evaluations i s  given i n  Appendix A .  

A more complete and essent ia l ly  

3.1 Temperature Dependence of Pressure Drop 

The pressure drop and flow d i s t r i b u t i o n  are  obtained from Equation 28 of 
Reference 1, which expresses the pressure drop of each channel and can be 
written as fol1 ows: 

%I 1 
) G i z  - g p i  L 

'i , ex i t  'i , i n l e t  

" n, 
The quant i t ies  f and P are  t o  be averaged over the coolant channel. For 

the evaluatfon of the coolant densi t ies  ;i the code, i n  the version received, 
uses the solid node temperatures [X( I , J ) ]  ra ther  than an average of the cool- 
a n t  temperatures [TO( I , J )  ]. 

Within the code assumption of constant core temperature i n  each node the 
cool a n t  temperatures w i  11 approach the core temperature exponenti a1 ly as  f o l -  
1 ows: 
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i .e. for large A and U o r  low W the cool a n t  temperature w i  11 essential  ly reach 
the core temperature. However, the integrated average cool ant temperature re- 
mai ns general ly d i f fe ren t  from the sol i d  temperature. 

To assess the e f fec t  of the coolant temperatures v i a  coolant densi t ies  on 
the channel pressure d rop  and the flow redis t r ibut ion,  and t h u s  ultimately on 
core temperature, a s e t  of three runs was made, a l l  i n  the mode FINDEX (de- 
scribed in Appendix A ) .  In  the f i r s t  run the sol id  temperature was used as 
average gas temperature; i n  the second run an arithmetic average of coolant 
i n l e t  and ex i t  temperature was used; and i n  the t h i r d  run integrated average 
gas temperatures were used as follows: 

For  the f r i c t ion  term, where the temperature appears in the numerator: 

e 

for  the buoyancy term, where the temperature appears i n  the denominator: 

where 
A ' U L  SL - 

P wc 

For practical purposes these two logarithmic average temperatures were very 
close t o  each other. 

The three runs are  compared i n  Figures 8-31 t o  B-50, g i v i n g  resu l t s  for 
channel 19 ,  which i s  one of the two h i g h  temperature and low flow channels 
(No. 6 and 1 9 )  as well as fo r  the maximum flow channel No. 28. 

In  the downward flow of a f lu id  being heated i n  var ious parallel  channel s 
a t  d i f fe ren t  ra tes ,  an uns t ab le  s i tuat ion i s  incurred as the hot ter  channels 

l e s s  coolant flow, etc.  W i t h  the use of average gas temperature, arithmetic 
or l o g  mean, t h i s  e f f ec t  i s  fur ther  strengthened, resul t ing i n  l e s s  flow i n  
the  h o t  channel s ( see Figures 3-31) , increased gas temperatures (Figures 8-33 
t o  37) and ultimately i n  increased core temperatures (Figures 8-41 t o  4 5 ) .  
The peak core tenperatures shown i n  Figure 6-50 are  about 600°F higher towards 
the end of the t ransient  i f  l o g  mean gas temperatures are  used, rather t h a n  
sol id  temperatures, i n  the evaluation of the densi t ies  i n  the pressure drop 
terms. This appears t o  indicate,  t ha t  due t o  the unstable flow s i tua t ion ,  the 
f l  ow dist r ibut ion over the various para1 1 el channel s , and the u l  timate core 

8 " will tend t o  get l e s s  flow, thereby becoming even hot ter ,  and gett ing even 
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temperature d i s t r i b u t i o n s  depend very strongly on the f lu id  temperature d i  s- 
t r i b u t i o n ,  and i t  may be warranted t o  use the more appropriate l o g  mean teinp- 
erature  d i  f ferences, even though thei r eval u a t i  on woul d sl i gh t l y  i ncrease 
computer run times. 

3.2 Pressure Drop Equat ion 

The overall pressure drop and the flow d i s t r i b u t i o n  over the 37 paral le l  
channel s - each representing one refuel i ng region - i s obtained i t e r a t ive ly  by 
solving Equation 1, the momentum equation, for  each channel. I t  i s  important 
t o  note tha t  i n  t h i s  equation the o r i f i c e  and f r i c t ion  pressure drop terms 
will change sign ( a G I G I ) ,  as the flow direction changes, while the momen urn 

In  the  O R E C A  code, as received, a l l  three terms were changing sign, i .e .  were 
t reated as GIGI. T h u s ,  the momentum pressure drop i s  not accounted fo r  prop- 
e r ly  d u r i n g  reverse flow. T h i s  provides for  a much simpler s o l u t i o n  a lgo -  
rithm, b u t  i s  n o t  s t r i c t l y  correct. The code subrout ine  SUMW was, therefore,  
modified, considering a change i n  s i g n  i n  the f r i c t ion  and o r i f i c e  pressure 
d rop  terms only. For the sample case the resul t ing changes were very minor ,  
i .e. the momentum pressure drop always remained small w i t h  respect t o  the ori- 
f i c e  and f r i c t ion  pressure drop terms. However, i n  t ransients  i n  which low 
flow rates  and large channel temperature rises pe r s i s t  for  longer time peri-  
o d s ,  the monientum pressure drop would not remain negligible,  and a correspond- 
i ng code modification coul d become very essenti  a1 . 

pressure drop term does not change sign, regardless of f low direction (aG 5 1. 

D 

3.3 Internodal Heat Conduction Algorithm 

Considering the sol id  of each node as  being a t  uniform temperature the  
energy equation fo r  heat t ransfer  between nodes can be expressed a f t e r  lumping 
or spati  a1 cli s c re t i  z a t i  on as 

d - - c k ( T ) A  (Tneighbor - T. 1 ? J  .) 
AX a1 1 Mi , j C p ( T i ,  j ) xT i ,  j 

neighbors 

+ Qgen - Qc 
i , j  i , j  

I n  this equation cp and  k are  temperature dependent, a s  indicated. 

S o l u t i o n  i n  the code i s  effected th rough  an exponential algorithm (Equa-  
% i o n  26 of Reference l )  rather than t h r o u g h  conventional f i n i t e  difference 
techniques. This exponential technique i s ,  f o r  instance, discussed for  l inear  
problem, <.e. f o r  the case of constant material properties i n  Reference 2. 
As shown there i t  can be o f  some advantage in problems where heat conduction 
i s  of l e s s  importance t h a n  internal heat generation or convective heat trans- 
f e r  t o  the coolant. 
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The time constant for  heat conduction in an HTGR reactor core i s  of the 
order of months:  To reach a Fourier number of u n i t  order 

L 

BTU BTU and c = .3 - P 1 b F  w i t h  k M 10 - f thrF  
1 

and  L = 25 f t ,  as used i n  O R E C A  one requires a time. o f  

T h i s  ixplies t ha t  temperature relaxation due t o  conduction w i t h i n  a cor- with- 
o u t  coolant flow could require times of the order o f  2000 hrs. Or, a l t e r -  
nately, t h a t  internal heat generation and heat t ransfer  to  the coolant within 
each node are  s ignif icant ly  more essential  than conduction fo r  t ransients  
las t ing  several hours or even a few days. For such cases, the exponential 
method shoul d give good resul t s  for  1 i near problems (constant rnateri a1 proper- 
t i e s ) ,  as discussed i n  Reference 2. However, i n  typical HTGR t ransients  the 
temperature dependence of the specif ic  heat and the thermal conductivity re- 
mains essent ia l .  T h i s  e f fec t  i s  only par t ia l ly  considered i n  the exponential 
algorithm as used i n  the ORECA code, where the local thermal conductivity was 
used a t  each node k ( T i , j ) ,  ra ther  than an average value between the node and  
i t s  respective neighbor, k(Tavg). T h u s ,  the computed conduction heat f l u x  be- 
tween two nodes i 1 and i 2  will be d i f fe ren t  when used fo r  the computation o f  
nodal temperatures i 1 and i 2, respectively. 

For  the t e s t  t ransient  a corresponding code modification t o  use conduc- 
t i  vi t i  es eval uated a t  an arithmetic average teRperature between nodes resul ted 
i n  core temperature changes of u p  t o  180°F, as  shown i n  Figures B-28 t o  B-30, 
and described i n  nore detail  i n  Section 4 of Appendix A. 
idealized t ransient  i t  i s  shown i n  Appendix C t h a t  the exponential algorithm 
i n  i t s  present form cannot conserve energy and approaches a steady s t a t e  so lu -  
t i o n  more t h a n  200°F lower than the correct  solution. 

For  a longer term 

The conductivity evaluation as currently used i s  much simp1 e r  and resu l t s  
i n  f a s t e r  code execution than the a1 go r i  t h m  usi ng average temperatures between 
nodes. It m i g h t ,  therefore,  be desirable to  re ta in  the current procedure f o r  
i i o s t  runs, especially those of an exploratory nature. 
desi r a b l  e t o  permit as an o p t i o n ,  w i t h  correspondi ng decrease i n  computational 
speed, the use of an a l te rna te  algorithm which uses an energy conservinc! aver- 
age conductivity between nodes. 

However, i t  would be 

4 c 0 NC L us I 0 Id 

The ORECA code has Seen reviewed and t e s t s  performed on several o f  i t s  
a1 cori thms. 
a u t h o r  for his consideration, as appropriate. 

The result ing observations have been communicated t o  the o r i 9 i n a l  
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Auuendix A 

Sequence of O R E C A  Code Evaluation Runs 

A . l  BASE 
* 
1 The O R E C A  code as received, w i t h  minor in i t i a l i za t ion  changes, was 

executed a t  BNL. 
O R N L  sample t e s t  case. 

The output resu l t s  were identical  t o  those given for  the 
These resu l t s  are  labelled as "BASE" i n  this study. 

A.2  MOD-BASE 

eva 

A.2  

The following changes were made t o  the BASE-version before prior code 
uations: 

1 Reverse Flow Coolant TemDerature 

Subroutine CFLplW uses as coolant temperature a t  the upper end of the 
T h i s  i s  appropriate f o r  f i r s t  node (j=1) the upper plenum temperature TIP. 

downward flow, b u t  n o t  fo r  the case of reverse flow. The code was modified t o  
use i n  the case of reverse flow the out le t  temperature of node j=1 i n  this po- 
s i t ion .  
sal  , w i t h  no major long term effects .  

Significant changes i n  resu l t s  were only observed d u r i n g  flow rever- 

A.2.2 Reverse Flow i n  I n l e t  Flow P a t h  

Tine code includes computations for  the temperature rise i n  the i n l e t  
flow p a t h  from the steam generator ou t le t  (TSGg) t o  the upper plenum i n l e t  
(TINP). These computations were found t o  produce erroneous resu l t s  i n  the 
case of reverse i n l e t  flow (FT<O).  The code was modified to  account for  re- 
verse f l o w  i n  the i n l e t  flow p a t h .  Significant changes i n  resu l t s  were only 
observed d u r i n g  flow reversal w i t h  no major l o n g  term effect .  However, i n  
u s i n g  ORECA as par t  of a systems simulation, the resulting higher values of 
the steam generator ou t l e t  position temperature (TSGO) could e f f ec t  the 
steam generator performance. 

A.2.3 Pressure D r O D  Aloorithm 

As described in the body of this report ,  the pressure drop algorithm 
was modified t o  retain the appropriate sign i n  the momentum pressure d rop  
term. For the sample t e s t  case used here, no s ignif icant  changes were ob-  
served. Nevertheless, as pointed o u t  above, this change can lead t o  s ignif-  
icant deviations i n  some t ransients  of in te res t .  

A.2.4 Converoence Tolerance i n  Flow Distribution LOOP 

2 

Tightening of the convergence parameters i n  the loop  f o r  pressure d r o p  
and flow dis t r ibut ion from 

absolute error  = .1 
re la t ive  e r ror  = .5X 
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t o  
absolute e r ror  = .001 
r e l a t ive  e r ror  = .005% 

resulted in some long term temperature changes of a b o u t  10°F and i n  some more 
s ignif icant  short-time changes d u r i n g  flow reversal time. 

The runs w i t h  the above fou r  program modifications are  labelled a s  
MOD-BASE i n  this study. 
ures B - 1  t o  8-27. For the sample t e s t  case the MOD-BASE resu l t s  d i f f e r  from 
the BASE results only s l igh t ly  i n  core and coolant temperatures, i n  par t icu lar  
i n  the long term response. Significant differences occur for short time peri-  
ods only d u r i n g  reverse flow a t  the steam generator ou t l e t  p o s i t i o n  and a t  the 
upper plenum i n l e t  position due t o  the modified reverse flow computations, see 
Figure B-23 and 8-24. 

Their comparison to  the BASE run i s  included i n  Fig- 

A.3 MOD-REV 

The temperatures used i n  the  evaluation of the coolant densi t ies  were 
changed for  the f r i c t ion  and buoyancy terms from the node sol id  temperature 
X(I , J )  t o  the average node coolant temperature [1/2(TO(I,J) -+ T!d(I ,J- l ) ) I .  
A t  the same time i n  the o r i f i c e  pressure drop the upper plenuin temperature 
T I P  was replaced by the coolant temperature a t  the t o p  of the f i r s t  node 
(see A.2.1).  
was 1 abel 1 ecl MOD-REV. 

Execution of the sample t e s t  case with these modifications, 

Some o f  the o u t p u t  d a t a  a re  being compared t o  those of the BASE and  MOD- 
Significant long tern temperature changes BASE cases i n  Figures B - 1  t o  B-27. 

a r e  now being observed, exceeding 400°F i n  the core and coolant temperatures 
i n  the center of the hot tes t  channel (see Figures B-6 and B-15 for  the coolant 
and  core temperatures of channel 19, node j = 5 ) .  The peak core temperature 
r i ses  by more than 200°F (see Figure 8-27) .  

A.4 TEMPS Modifications 

To compare the non-conservati ve exponenti a1 a1 gor i  t h m  for  heat conduction 
of the ORECA code w i t h  a conventional f i n i t e  difference a1 gorithm, modifica- 
t ions were made t o  solve for the sol id  temperature dis t r ibut ion in a subrou-  
t i n e  which uses e i ther  the exponential algorithm as provided in the code 
(ibde=EXPO), or a conservative f i n i t e  difference algorithm (Mode=FINDIM), or  
a sl ightly non-conservative b u t  f a s t e r  f i n i t e  difference a1 gori thm (Mode= 
FINDEX) .  
in the refueling regions u s i n g  constant properties only i n  the s ide reflec- 
tors. An o p t i o n  was provided t o  e i ther  retain this procedure (IOPT=l) or t o  
consider the properties t o  be temperature dependent i n  a l l  nodes (IOPT=2). 

The code as received considered property variations w i t h  temperature 

The TEMPS runs illode=EXPO, IgPT=l  d i d  dupl  i c a t e  the MOD-REV resu l t s .  
Applying IOPT=2 vs IOPT=l ,  i .e .  considering the temperature dependence o f  k 
and cp, eveiywhere changes i n  the re f lec tor  temperatures of about 30°F were 
observed (Mode=EXPO). Decreasing the time step interval from At=.5 sec t o  
n t = . l  sec resulted in maximum temperature changes of about 30°F in the E X P O  
mode as we17 as in the FIND114 mode. 

- 8 -  



Much more s ignif icant  temperature changes were observed when comparing 
runs made i n  the  EXPO mode vs runs i n  the FINDIM or FINDEX mode (a l so  referred 
t o  as FINDIF) both w i t h  IOPT=2 and A t = . l .  These changes are primarily due t o  
the f ac t  t h a t  the  EXPO version evaluates a l l  heat fluxes a t  a specif ic  node 
based on the thermal conductivity a t  the temperature of t ha t  node. T h u s ,  i n  
this mode, as i n  the  O R E C A  code received, the heat flux from node i t o  node j ,  
used when computing temperature T i  i s  d i f fe ren t  from the flux between i and j 

fol 1 owing temperature deviations. 
I used when computing T j .  This leads t o  non-conservation of enerw and t o  the 

The core and coolant ou t l e t  temperatures of channel 6 ,  node 6 ,  change by 
These resu l t s  are  shown i n  Figures 18OoF, as does the peak core temperature. 

B-28 t o  30. 

A.5 Conduction Area Ratio i n  Axial Direction 

thermal conduction in axial correction. As implemented with the current ex- 
ponential algorithm this option would y ie ld  incorrect resu l t s  for  any value 
of A R  other t h a n  1.0. ( In  the current EXPO t e s t  runs only AR=l.O was used.) 
The error  a r i ses  as i n  an integration of Equation 6 ,  leading t o  an equation 
similar t o  Equation 26 of Reference 1, the e f f ec t  of A R f l  would also be 
reflected i n  the f i r s t  term on the r i g h t  hand s ide of Equation 26, and n o t  
only i n  the second term, as i t  i s  currently implemented i n  the code. 

The code, i n  the  version received, uses an area r a t io  mult ipl ier  for  

The F o r t  S t .  Vrain core geometry would suggest t h a t  an area r a t io  o f  
a b o u t  2.5 would be appropriate. One such run using the FINDIF mode, where 
the use of ARfl has been incorporated appropriately yielded only about 30°F 
i n  peak temperature changes, indicating t h a t  axial conduction was n o t  very 
essential  i n  the t e s t  case used. However, before future problems can be i n -  
vestigated i n  which axial conduction i s  expected t o  be more essent ia l ,  the 
appropriate code modifications shoul d be made. 
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Appendix B 

I n  t h i s  appendix some of the resu l t s  of the O R E C A  evaluations are  shown. 
Figures B - 1  t o  B-27 cover the cases BASE, MOD-BASE and MOD-REV of Appendix A. 
Typically, resu l t s  are  shown fo r  the following charac te r i s t ic  channels*: 

I 

Radi a1 
Power Channel Flow Rate 

Core Maximum 
Temperature and 
Axial Position 

Channel Factor (1 b/mi n )  ( F )  
No. QR t = O  min t=240 m i n  t = O  m i n  t=240 min 

6 1.83 2132 3.9 190517 255617 
19 1.83 2132 2.8 190517 260317 
20 .99 1153 .86 184817 2272/7 
28 .56 1465 68 126917 93019 

Thus, the channels have the fo l l  owing character is t ics :  

6 and 19: Highest QR, highest temperatures a t  t = O  and t=240. 
Highest flow a t  t = O ;  r e la t ive ly  low flow r a t e  a t  t=240. 

20 : Lowest flow r a t e  a t  t=240. 

23 : Highest flow ra t e  a t  t=240. 

Figures 8-23 t o  B-30 give some resu l t s  from the  EXPO vs FINDIF runs. Figures 
3-31 t o  8-51 show resu l t s  for  the gas temperature variation in the pressure 
d r o p  density terms of Equat ion 20 of Reference 1 (see Section 3 o f  t h i s  memo- 
randum). 

*Suminary d a t a  from a typical run ( F I N D E X ,  log any gas temp., t=.l). 
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Figure B - l .  Channel 6 flow r a t e  for cases BASE, MOD-BASE, and MgD-REV. 
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Figure B-2. Channel 19 f l o w  r a t e  for cases BASE, MOD-BASE, and MPD-REV.  
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Figure B - 3 .  Channel 20 f low r a t e  for cases BASE, MOD-BASE, and MgD-REV. 
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Figure  8-4. Channel 28 f l o w  r a t e  for  c a s e s  BASE, MOD-BASE, and MOD-REV. 
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Figure B-5. 
cases BASE, MgD-BASE, and MgD-REV. 

Channel 19 gas o u t l e t  temperature a t  top node (J=1) for  
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Figure B-6. 
f o r  cases BASE, MgD-BASE, and MgD-REV.  

Channel 19 gas o u t l e t  temperature a t  center  node (J=5)  
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Figure  B-7. 
f o r  cases BASE, MgD-BASE, and MgD-REV. 

Channel 19 gas  o u t l e t  t empera ture  a t  bottom node (J=3) 
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Figure 5-8. 
cases BASE, MgD-BASE, and MgD-REV. 

Channel 20 gas out le t  temperature a t  t o p  node (J=1) for  
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Figure K-9. 
for cases BASE, MgD-BASE, and MgD-REV. 

Channel 20 gas out le t  temperature a t  center node (J=5)  
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Figure B-10, 
for cases BASE, MBD-BASE, and MBD-REV. 

Channel 20 gas ou t l e t  temperature a t  bottom node (J=8)  
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Figure B - 1 1 .  
for cases BASE, MgD-BASE, and MgD-REV. 

Channel 25 gas ou t l e t  temperature a t  t o p  node (J=1) 
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Figure B-12. 
for cases BASE,  MOD-BASE, and MgD-REV. 

Channel 28 gas o u t l e t  temperature a t  center node (J=5) 
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Figure 8-13. 
for  cases BASE, MgD-BASE, and MgD-REV. 

Channel 28 gas ou t le t  temperature a t  bottom node (J=8) 
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Figure B-14. 
BASE, MgD-BASE, and MgD-REV. 

Channel 19 core temperature a t  t o p  node (J=1) for cases 
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Figure H-15. Channel 19 core temperature a t  center node (J=5)  for 
cases BASE, MgD-BASE, and MgD-REV.  
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Figure B-16. Channel 19 core temperature a t  bottom node (J=8) f o r  
cases BASE, MgD-BASE, and MgD-REV. 
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Figure K-17. 
BASE, M@D-BASE, and MOD-REV. 

Channel 20 core temperature a t  t o p  node (J=1) for cases 
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Figure 8-18. Channel 20 core temperature a t  center node (J=5) for 
cases BASE, MOD-BASE, and MOD-REV. 
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Figure B-19. 
cases BASE, MgD-BASE, and MgD-REV.  

Channel 20 core temperature a t  bottom node (J=S) for 
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Figure B-20.  
BASE, MgD-BASE, and MgD-REV. 

Channel 23 core temperature a t  top node ( J = l )  f o r  cases 
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Figure B-21. 
cases BASE, MgD-BASE, and MgD-REV. 

Channel 28 core temperature a t  center node (J=5)  for 
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Figure 8-22. 
cases BASE, MOD-BASE, and MgD-REV.  

Channel 28 core temperature at bottom node (J=S) for 
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Figure K-23. 
B A S E ,  MiOD-BASE, and MgD-REV. 

Temperature a t  upper plenum in le t  position f o r  cases 
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Figure B-24. 
BASE, MgD-BASE, and M@D-REV. 

Temperature a t  upper plenum in le t  position for  cases 
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Figure B-25. 
MBD-BASE, and IIBD-REV . 

Temperature a t  core i n l e t  position for  cases BASE, 
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Figure B-26. 
MgD-BASE , and MBD-REV. 

Temperature a t  core o u t l e t  posit ion for  cases BASE, 
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Figure B-27. 
MOD-BASE, and MgD-REV. 

Peak core temperature during transient for cases BASE, 
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Figure B-28. 
for cases EXPB and FINDIF. 

Channel 6 gas ou t l e t  temperature a t  center node J=6 
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Figure B-29. 
EXPg and FINDIF. 

Channel 6 core temperature a t  center node J=6 for cases 
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Figure 8-30. 
EXPO and FINDIF. 

Peak core temperature d u r i n g  t ransient  for  cases 
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Figure 8-31. 
varied .in the evaluation of  densit ies in pressure drop  terms. 

Channel 19 flow rate  for case o f  gas temperatures being 
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Figure B-32. 
varied in the evaluation o f  densities i n  pressure drop terms. 

Channel 28 flow rate for  case of gas temperatures being 

, 

- 43 - 



50. IO0 I50 
T I M E  I M I N I  

200 250 

Figure 13-33. 
case of  gas temperatures being varied i n  the evaluation o f  densi t ies  
i n  pressure d r o p  terms. 

Channel 19 gas ou t l e t  temperature a t  top node (J=1) for 
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Figure B-34. 
for case of gas temperatures being varied i n -  the evaluation o f  den- 
s i t i e s  i n  pressure d r o p  terms. 

Channel 19  gas ou t l e t  temperature a t  center node (J=5)  
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Figure B-35. 
f o r  case of gas temperatures being varied i n  the evaluation of den- 
s i t i e s  in pressure d r o p  terms. 

Channel 19 gas ou t l e t  temperature a t  center node (J=6)  
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Figure B-36. 
for case o f  gas temperatures being varied i n  the evaluation o f  den- 
s i t i e s  i n  pressure d r o p  terms. 

Channel 19 gas ou t l e t  temperature a t  center node (J=7) 
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Figure R-37. 
for  case of gas temperatures being varied i n  the evaluation of den- 
s i t i e s  i n  pressure d r o p  terms. 

Channel 1 9  gas ou t le t  temperature a t  bottom node (J=8) 
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Figure B-38. 
case o f  gas temperatures being varied i n  the evaluation of  densi t ies  
in pressure drop  terms. 

Channel 28 gas ou t l e t  temperature a t  t o p  node (J=1) fo r  
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Figure K-39. 
f o r  case of gas temperatures being varied in the evaluation of den- 
s i t i e s  i n  pressure d r o p  terms. 

Channel 28 gas ou t l e t  temperature a t  center node (J=5)  
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Figure B-40. 
for  case o f  gas temperatures being varied i n  the evaluation o f  den- 
s i t i e s  i n  pressure d r o p  terms. 

Channel 28 gas ou t le t  temperature a t  bo t tom node (J=8)  
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Figure B-41. 
o f  gas temperatures being varied i n  t he  evaluation o f  densi t ies  i n  
pressure drop terms. 

Channel 18 core temperature a t  t o p  node ( J = l )  f o r  case 
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Figure B-42. 
case of gas temperatures being varied in the evaluation of densi- 
t i e s  in pressure d r o p  terms. 

Channel 19  core temperature a t  center node (J=5)  for 
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Figure 8-43. 
case o f  gas temperatures being varied in the evaluation of  densi- 
t i e s  i n  pressure d r o p  terms. 

Channel 19 core temperature a t  center node (J=6) for 
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Figure B-44. 
case of  gas temperatures being varied i n  the evaluation o f  densi- 
t i e s  i n  pressure d r o p  terms. 

Channel 19 core temperature a t  center node (J=7) for 
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Figure Eb45. 
case o f  gas temperatures being varied i n  the evaluation o f  densi- 
t i e s  i n  pressure d r o p  terms. 

Channel 19 core temperature a t  bottom node (J=8)  for  
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Figure B-46. 
of gas temperatures being varied in the evaluation of  densit ies i n  
pressure d r o p  terms. 

Channel 28 core temperature a t  t o p  node (J=1) for case 
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Figure B-47. 
case of gas temperatures being varied in the evaluation of densi- 
t i e s  in pressure drop terms. 

Channel 28 core temperature a t  center node (J=5) fo r  
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Figure B-48. Channel 28 core temperature a t  bottom node (J=S) for 
case o f  gas temperatures being varied i n  the evaluation of densi- 
t i es  i n  pressure drop  terms. 
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Figure B-50. 
being varied i n  the evaluation o f  densi t ies  i n  pressure d r o p  terms. 

Peak core temperature for case o f  gas temperatures 
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Appendix C 

Idealized Heat Conduction Problem 
i n HTGR Core Configuration 

The O R E C A  code provides for  a three-dimensional core and includes three- 
,. dimensional heat conduction. W i t h  the properties and sizes of an H T G R  cor2 
A 

the  charac te r i s t ic  times fo r  conduction t o  be essential  are  very large. 
Fourier number of u n i t  order i s  only reached a f t e r  1900 hrs, see Section 3 ,  

A 

. above. 
> 

To assess the accuracy of the exponential algorithm used by ORECA i n  
sol v i  ng the three-dimensional heat conduction probl em a simp1 e homogeneous 
thermal conduction problem was solved in the HTGR.core configuration of the 
code. 
and the temperatures i n  the side-, top - ,  and bottom-reflectors are s e t  t o  
1000°F. 
The ultimate steady s t a t e  temperature fo r  t h i s  problem i s  only reached a t  
F o u > l ,  i.e. for times of the order of 2000 hrs. The t ransient  was followed 
here for 100 hrs only using the exponential algorithm (mode=EXPO) or  a con- 
servative f i n i t e  difference a1 gorithm (mode=FINDIF). 
were permitted: 

The temperatures i n  the active core (lZie37, Zee71 are s e t  t o  3000"F, 

There i s  neither any coolant flow, nor any internal heat generation. 

Three property options 

IgPT = 0 a l l  properties are  constant 

IaPT = 1 the active core properties are  temperature dependent; 
the side re f lec tor  properties are  constant; the t o p  
and bottom ref lec tor  ( j  = 1 and 8 )  have a higher mass 
t h a n  the other active core regions ( this  i s  exactly 
corresponding t o  the O R E C A  code) 

IaPT  = 2 a l l  properties are temperature dependent; the same 
mass correction as i n  IgPT = 1 i s  applied for  the 
t o p  and bot tom re f lec tor  ( j  = 1 and 8 ) .  

Trial  runs showed tha t  the FINDIF solutions of 50 min and 10 m i n  time 
The 1 0  min  time step resu l t s  will be steps were w i t h i n  p l o t t i n g  accuracy. 

compared t o  the EXPg resul ts .  Some resu l t s  are  shown i n  Figures C-1 t o  C-8. 

Figures C - 1  t o  C-4 show t ha t  fo r  constant properties (IgPT = 0)  the  ex- 
3' ponential solution approaches the conservative f i n i t e  difference solution as 

the time step i s  reduced. 
energy and converges w i t h  reduced time step s i ze  t o  a f inal  steady s t a t e  
temperature which l i e s  a b o u t  200°F lower than the conservative solution as 
shown i n  Figures C-5 t o  C-8. 
exponential algorithm can improve computational speed, b u t  can also r e su l t  i n  
s ignif icant  errors in the final s o l u t i o n  of l o n g  term transients.  

However, i n  the case IaPT  = 2 the E X P O  model loses 

Thus, the simplified property treatment of the 
: 
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Figure C - 1 .  Thermal energy i n  the s?stern, IOPT = 0 .  
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Figure C-2. Core center temperature ( i = l y  j = 5 ) ,  IOPT = 0. 
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Figure C-3. Core boundary temperature (i=23, j = 5 ) ,  IOPT = 0. 
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Figure C-4. Reflector lower temperature ( i = 4 2 ,  j = l ) ,  IOPT = 0. 
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Figure C-6. Core center temperature ( i = l ,  j = 5 ) ,  IOPT = 2. 
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Figure C-7. Core boundary temperature ( i=23,  j = 5 ) ,  IOPT = 2. 
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Figure C-8. Reflector lower temperature ( i=42,  j=l), IOPT = 2. 
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(Dimensions i n  L,M,T,e System CI With 
M L ~  ML and H = FL = 71 F = 7  

T 

f A 
I 

A '  

P C 

k 

L 

M 

P 

I 
Qgen 

I 
r 

T 

t 

U 

w 

2 
cross sectional area between nodes [ L  ] 

heat t ransfer  area per u n i t  length [-I L l.2 

H specif ic  heat I,,, 

cool ant channel 

f r i c t i o n  fac tor  

mass f l u x  [-I M 
L *T 

hydraul i c  diameter [ L ]  

L -1 

L gravity constant [-I 
T2 

H thermal ' conductivity [m] 

length of coolant passage (Eq.  1) [ L ]  
(a lso length of flow passage w i t h i n  node [Eqs. 3 t o  51) 

mass per node [MI 

pressure [-] 

density [,I 

F 
L2 

M 
L 

H heat generated 

temperature [ e ]  

time [TI 

overall heat t ransfer  coeff ic ient  [-] 

mass flow [TI 

H 
L ~ T ~  

M 
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X running coordinate i n  flow direction [L] 

AX distance between nodes [L] 

Subscripts 

i lateral refueling region or coolant channel 

j axial nodal position 

f l  cool a . n t  

i 

S solid core 

Superscript 

'L averaged over coolant channel 
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